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We describe movement patterns of hatchery-raised, juvenile, spring chinook salmon,
Oncorhynchus tshawytscha, using a two-state Markov chain model. The existence of two
states,movingand holding, is suggestedby anecdotalinformationfrom a large radio teleme-
try study; yet adequateobservationsof these small-scale�sh behaviorsare not available for
estimating transition probabilities directly. Instead, we estimate the transition probability
matrix from travel times within each of 11 river segments using a method of moments ap-
proach. Bootstrappedcon�dence intervals are presented.Results suggest that �sh behavior
in the region of the con�uence between the Grande Ronde and Snake Rivers includesmany
transitions between moving and staying while �sh behavior in the Snake River is more
likely to include long periods of staying.
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1. INTRODUCTION

1.1 BACKGROUND

Recent evidence indicates that substantial mortality of yearling hatchery chinook
salmon, Oncorhynchus tshawytscha, from the Snake River system, located in Washington,
Oregon, and Idaho, occurs in the free-�owing segments of the river above Lower Granite
Dam (LGR); yet there is little informationabout �sh behavior in this area. Previous research

has focused on the managed sections of the river below LGR for two reasons. Historically,
poor survival has been attributed to dif�culties in passage through hydroelectric facilities
(Raymond, 1988) and data on �sh passage at hydroelectric facilities is regularly collected
and readily available. However, current estimates for survival of hatchery-produced, year-
ling chinook salmon to LGR, the �rst dam encountered during seaward migration, have
been as low as 15–80% and are related to distance traveled (Smith et al. 1998). These recent
data suggest that an improved understandingof behavior during migration through the free-
�owing segments of the river might enable improved management strategies (Independent
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Scienti�c Group 1996). The data set presented here provides detailed information on �sh
behavior in the free-�owing segments of the river above LGR reservoir.

In this paper, we develop a basic model that uses observed patterns in �sh movement to
estimateunobservablesmall-scale behavior. The model is not intendedto describe actual�sh

movements but to provide a framework for understanding small-scale migratory behavior
and for comparing this behavior between locations or over time. We incorporate mean river
velocity into the basic model to approximate actual river conditions, and we examine its
effect on estimated parameter values. Our aim is to develop a stochasticmodel that provides
insights into small-scale �sh behavior within the constraints of well-described, larger scale
models of migration processes.

Extensions of the model introduced here might be applicable to a wide range of re-
search efforts. Advances in radio telemetry technologyhave induced a proliferation of radio

telemetry data; however, methods for analyzing such information are not readily available.

1.2 DATA

The �sheries data for this analysis are from a large radio telemetry study carried out
by the National Marine Fisheries Service. Combination radio transmitter/passive integrated
transponder (PIT) tags were surgically implanted into 129 yearling chinook salmon at

Lookingglass Hatchery in March 1997. The �sh were allowed to recover in the hatchery
for approximately 2 weeks, after which time they were released into Lookingglass Creek.
Their migration path included 132 km of the Grande Ronde River and 52 km of the Snake
River. Fish behavior at the con�uence of these two rivers was of particular interest.

Sample size was reduced by mortality both at the hatchery and during migration.
During their migration from Lookingglass Creek to the LGR Reservoir, the �sh migrated
past 12 �xed-site telemetry receiving stations. Due to signal strength, antenna orientation,
tag failures, and other dif�culties with the electronic equipment, most �sh were detected at

only a subset of the 12 stations. For further details on the radio telemetry experiment, see
Hockersmith, Muir, Smith, and Sanford (1998).

In this paper, we describe a technique to model travel time between stations. Travel
time was calculated for each of 11 river segments for each �sh observed at both endpoints.
We de�ne a river segment as the section of river between any contiguous pair of stations.
There are between 7 and 31 observations for any one segment.

River velocity data was collected at 8 of the 12 observation stations during the period
of out-migration. For this paper, velocity (m/sec) is de�ned as the maximum observable
surface velocity. Velocity was estimated from the travel time of �oating objects over a

�xed distance and, where possible, from a boat using a Global Positioning System (GPS).
Velocity for a particular river segment was indexed by the average of 2–10 measurements
taken over the course of the study (April 5–May 6, 1997) at an accessible location near
the telemetry receiving station. We used a single value to describe velocity over the entire
course of the study because adequate data were not available at �ner temporal scales. In
reality, the velocity �uctuated from day to day; however, the relative velocities of the river
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segmentsshouldnot be greatlyaffected by this simpli�cation. In most river systems,velocity
increases as one moves downstream; however, the �nal stations on the Snake River were
just upstream from LGR Reservoir and velocity decreases signi�cantly in this area.

2. MARKOV CHAIN MODEL

2.1 MODEL SU MMARY

We use the two-state Markov chainmodel to describe�sh behaviorbetweenobservation
opportunities (Guttorp 1995). Our model describes a dependent, unidirectional random
walk. We are interested in estimating the elements of the transition probability matrix. The
transitionprobabilitymatrix describes the oddsof a �sh being in a particular state during the

next time interval given its behavior in the previous time interval.The two states included in
the model are staying and moving. In each time interval, a �sh either holds in the same place
or moves one unit of distance downstream. The parameters of interest, p00, the probability
of staying given that the �sh stayed in the previous time interval, and p11, the probability
of moving given that the �sh moved in the previous time interval, de�ne the transition
probability matrix.

A two-state Markov chain model was selected to meet two criteria. First, the selected
model should converge to the inverse Gaussian distribution in the limit. Previous research

on migrations of large cohorts of �sh between dams has shown that the distribution of
travel times follows the inverse Gaussian distributionextremely well (Zabel, Anderson, and
Shaw 1998). Second, the model should describe migration patterns observed in the �eld.
During the study, mobile tracking was used to pinpoint �sh locations between the �xed-site
monitoring stations. Fish were often observed to stay in the same location for several days
at a time before reinitiatingdownstream movement. A two-state Markov process is a simple
model that both converges to the inverse Gaussian distribution and includes a parameter to
describe periods of staying.

At regular time intervals, we assume that the �sh makes a decision to move. If the �sh

makes a positive movement decision, then it travels some unit of distance downstream. If it
makes a negative decision, then it stays in the same location. Travel time is the number of
decision periods a �sh must wait in order to move one unit of distance downstream. Travel
time for an entire segment is estimated from the model as the time, or number of decision
periods, required to make enoughpositivedecisions to travel the length of the river segment.
In the �rst model presented here, distance traveled per movement decision is independentof
the river segment being traveled. In the second model, velocity is incorporated by allowing
�sh to move a distance that is dependent on the relative mean velocity in each river segment.

2.2 MODEL CALIBRATION

The model must be calibrated with two values, the number of movement decisions per
hour and the distance traveled per positive movement decision. The number of movement
decisionsper hour translates the expectednumber of decisionsrequired to make one positive
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decision into the expected wait time to move one unit of distance. The distance traveled
with one positive movement decision de�nes the number of positive movement decisions
required to move a given distance downstream. The combination of these two parameters
de�nes the maximum travel speed that the model will allow. This maximum would occur if

the �sh were to travel at every movement opportunity.A �sh may never actually travel at the
maximum speed, but the value should be set so that it does not constrain the model output.
We set the maximum travel speed, 32 km/h, at just over twice the maximum observedsurface
velocity of the river to allow for pockets of high velocity water and bursts of directional
swimming.

There is a range of parameterizations by which one can achieve the appropriate
maximum travel speed. For example, a �sh can make one movement decision every hour
and travel 32 km with a decision to move or a �sh can make 1,000 decisions every hour and

travel only 0.03 km with every positive movement decision. Each possible scale de�nes a
potential model that could be used to describe �sh behavior. The best scale for a particular
data set is the one that provides the most information with the greatest precision. Within
these constraints, it should also make biological sense.

We conducted a simulation study to assess the effect of scale on both parameter values
and the width of the 95% con�dence interval around the parameters. As the number of
decisionsper hour increased, thewidthof the con�dence intervalaround p̂00 decreasedwhile
the width of the con�dence interval around p̂11 increased. At 40 movement decisions per
hour, con�dence intervals around both estimates were small enough to provide information

in both the basic and the velocity models. As well, the most information from the data, the
greatest differentiation between parameter estimates in different segments of the river, was
achieved at 40 movement decisionsper hour for both models. At this scale, a �sh travels 0.8
km with every positive decision to move. The use of this scale does not imply that 0.8 km
per decision is a biologically meaningful constant with respect to individual �sh behavior.

2.3 NOTATION

The following notation will be necessary for the calculations in the next section. Let

pi;j = probability of movement decision i during current time interval given movement
decision j at previous time interval, i; j = 0; 1 (0 = stay, 1 = move),

w = wait time, or number of decisions, to move one unit of distance,
lk = length (km) of river segment k, k = 1; 2; 3; . . . ; 11,
tk = �sh travel time (days) through river segment k,
vk = mean water velocity (km/day) in river segment k,

¹v = mean of the water velocities, vk , over all k segments,
mk = (lk=0.8)=(vk=¹v) = number of movements required to complete river segment k,

and
nk = number of �sh for which travel time through segment k was observed.

The parameter vk is equal to one for all k river segments in the basic model.
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2.4 ESTIMATION OF THE TR ANSIT ION MATR IX

The �rst step in applying the method of moments is to calculate the expected value
and the variance of tk using the Markov model. To begin, we calculate the expectation
and variance of W . We assume that each �sh is initially in the move state, a reasonable
assumption given that the �sh must be moving to enter each study segment. The expectation

and variance of W are

E(W ) =

1X
w = 1

wp(w)

= 1p11 + 2(1 ¡ p11)(1 ¡ p00) + 3(1 ¡ p11)(1 ¡ p00)p00

+ 4(1 ¡ p11)(1 ¡ p00)p2
00 + ¢ ¢ ¢

= p11 + (1 ¡ p11)(1 ¡ p00)

1X
x = 0

(2 + x)px
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´
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Therefore,

var(W ) = p11 + (1 ¡ p11)(1 ¡ p00)
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2
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p00
+

1

p00(1 ¡ p00)2

¶
¡

μ
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�
2 +

p00

1 ¡ p00

´¶2

.

We are interested in the moments of Tk, �sh travel time through segment k. Fish travel
time can be calculated as the sum of the individual wait times. These times are independent

given that the initial state for each interval must be one; therefore, E(Tk) = mkE(W ) and
var(Tk) = mkvar(W ).

Because the distribution of travel times is assumed to converge to the inverse Gaussian
distribution,we use the inverse Gaussian distribution to calculate the mean and variance of
the data. The probability density function of a random variable, X, distributed as inverse
Gaussian with parameters · and ¶ is given by
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f (x; ·; ¶) =

�
(¶=2ºx3)1=2 exp(¡¶(x ¡ ·)2=2·2x); x > 0,
0; otherwise,

where · and ¶ are positive (Folks and Chhikara 1978). The mean and variance of X are
given by E(X) = · and var(X) = ·3=¶. Uniform minimum variance unbiased estimates
(UMVUEs) for · and ¶ are ¹x and (n¡3)=§n

i = 1 (1=xi¡1=¹x), respectively.Using UMVUEs
for · and ¶, the mean of the data can be estimated by ¹tk and the variance by

1

(nk ¡ 3)
¢ (¹tk)

3 ¢
X
nk

�
1

tk
¡ 1

¹tk

´
;

where ¹tk is the mean travel time for all �sh observed in segment k.
The method of moments estimator of the transition probability matrix is calculated by

setting the expectedvalueand varianceequal to theirobservedvalues and solvingfor p̂00 and
p̂11. The estimates p̂01 and p̂10 can be calculatedsimply as 1¡ p̂00 and 1¡ p̂11, respectively.
Although method of moments estimators are not necessarily ef�cient or unbiased, they are
reasonable and can be obtained with a minimum of mathematical dif�culty (Larsen and
Marx 1986).

Con�dence intervals for p̂00 and p̂11 were calculated using a nonparametric bootstrap.
The travel times for each river segment were sampled with replacement. The number of
randomly sampled observations was equal to the number of true observations in each
segment. The estimates p̂00 and p̂11 were then calculated for each of 1,000 iterations of the

sampling procedure. The 95% con�dence intervals for p̂00 and p̂11 were calculated from
the simulated distributions.

3. RESULTS

Tables 1 and 2 display the estimates and bootstrapped95% con�dence intervals for both
p00 and p11 by river segment for the basic model (Table 1) and for the model incorporating

relative velocity (Table 2). Con�dence intervals were constrained to [0; 1]. A lack of
signi�cant digits in the estimate identi�es occasions where the simulated estimates were
outside this range. Table 1 also includes the number of observations in each river segment
and the length of that segment (km).

Velocity is incorporated into the model by dividing the reach length, lk, by the relative
mean velocity, vk=¹v. The effect of incorporating velocity in the model is to reduce or
increase the number of movements required to complete a given river segment. We assume
that, where the river is faster, a moving �sh travels farther with each decision to move and
vice versa. Table 2 includes the relative velocity in each segment. It contains only nine of

the original segments because velocity data were not available for two of the segments.
Model �t was assessed by simulating travel times for particular river segments

and comparing these simulated data to the observed travel times using a two-sample
Kolmogorov–Smirnov test. There was a signi�cant difference between the simulated and
observed data when the estimates were used exactly. However, if only the estimate for p00

was used and the estimate for p11 was modi�ed slightly, there was no signi�cant difference.
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Table 1. Estimates and Con�dence Intervals for p00 and p11 From the Basic Model. Number of
observations and segment length are included. GRR = Grande Ronde River, SR = Snake
River.

p00 River data p11

Lower Upper Lower Upper
bound bound bound bound
95% CI Estimate 95% CI Segment number nk Lk 95% CI Estimate 95% CI

0.9773 0.9954 0.9983 GRR (2) 31 41 0.9281 0.9722 0.9834
0.7813 0.9878 0.9967 GRR (3) 11 19 0 0.8636 0.9382
0.5501 0.9970 0.9988 GRR (4) 7 11 0 0.9576 0.9701
0.8602 0.9775 0.9900 GRR (5) 16 25 0.5166 0.8792 0.9270
0.6266 0.9183 0.9714 GRR (6) 25 15 0 0.6204 0.8260
0.6608 0.9343 0.9705 GRR (7) 25 23 0 0.7253 0.8426
0.9777 0.9920 0.9955 GRR + SR (8) 21 6 0.7969 0.8756 0.9030
0.9697 0.9937 0.9973 SR (9) 23 13 0.7750 0.9117 0.9424
0.9991 0.9998 0.9999 SR (10) 20 25 0.9757 0.9893 0.9930
0.9894 0.9999 1.0000 SR (11) 20 1 0.3638 0.9451 0.9714
0.9990 1.0000 1.0000 SR (12) 20 7 0.9461 0.9914 0.9956

The required modi�cations of p̂11 were well within the 95% con�dence interval. For
example, for segment 8, the estimated value for p11 was 0.8756; simulations using a value
of 0.8723 were not signi�cantly different from the observed data, implying that the output
from our model is consistent with our data.

Differences in behavior between estimates of the two parameters exist because the
parameters affect different parts of the travel time distribution. The wait time, p00, has
a strong in�uence on the length of the tail of the inverse Gaussian distribution, which is
determined by the travel times of the slowest �sh. With small sample sizes, the clearest

information is in the tail of the distribution; therefore, we would expect the estimates of p00

to be more stable and to better differentiate �sh behavior among the river segments than
estimates of p11. This pattern was re�ected in the estimates for both models. The addition
of velocity had a stronger effect on p̂11 than p̂00 because the change had a greater effect on
the apparent mean travel time than on the variance of travel time.

Table 2. Estimatesand Con�dence Intervalsfor p00 and p11 IncorporatingRiver Velocity.GRR = Grande
Ronde River, SR = Snake River. Relative velocity is calculated as vk=¹v.

p00 River data p11

Lower Upper Lower Upper
bound bound Relative bound bound
95% CI Estimate 95% CI Segment number velocity 95% CI Estimate 95% CI

0.9740 0.9953 0.9982 GRR (2) 1.10 0.8380 0.9684 0.9670
0.8453 0.9878 0.9966 GRR (3) 0.90 0 0.8787 0.9076
0.7885 0.9970 0.9988 GRR (4) 1.36 0 0.9407 0.9322
0.8820 0.9773 0.9905 GRR (5) 1.08 0.1829 0.8666 0.8659
0.8260 0.9355 0.9711 GRR (7) 1.44 0 0.5825 0.6083
0.9777 0.9920 0.9955 GRR + SR (8) 0.92 0.6916 0.8860 0.8573
0.9988 0.9998 0.9999 SR (10) 0.80 0.9661 0.9914 0.9911
0.9930 0.9999 1.0000 SR (11) 0.69 0.4341 0.9616 0.9686
0.9991 1.0000 1.0000 SR (12) 0.57 0.9514 0.9951 0.9961
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In both models, estimates of p00 and p11 are substantiallysmaller for the river segments
just upstream of the con�uence of the Grande Ronde and Snake Rivers (segments 6 and 7)
than estimates for any other river segments. In both the basic model and the velocity model,
estimates for p00 in the Snake River were higher than estimated for the Grande Ronde River.

4. DISCUSSION

The two-state Markov model is a simple model to describe the process of migration in
juvenile salmonids within the constraints of well-studied models of �sh migration at larger
scales. The method described here is successful at estimating parameters of the transition
probability matrix that yield information about behavior that would be dif�cult to observe
directly. Using this method of moments approach, estimates of the transition probability
matrix can be calculated from travel time distributions, frequently observed in both radio
telemetry studiesand in the large PIT tag studiescarried out by the NationalMarineFisheries
Service.

The two-state Markov model is a probabilistic model to produce estimates of
unobservable yet biologically meaningful parameters. For example, p00, the probability of
stayinggiven that the �sh stayed in the previous time interval, givesmanagers and biologists
an index of how long a �sh might hold in a particular area. The stationary probability of
staying, independent of the �sh action in the previous time interval, can be calculated as
(1 ¡ p11)(2 ¡ p11 ¡ p00) and provides an index of the likelihood that a �sh will hold in
a particular region. Because the estimates of exact parameter values can be in�uenced by
model scale and are not intended to describe the actual physical behavior of the �sh, the
model will be most useful for comparing�sh behavioracross situations,e.g., comparing�sh
behavior between river segments, across years, between species, or between environments
with differing conditions. Differences in �sh behavior between high and low �ow years or
between rivers with high and low juvenile survival rates are of particular interest to �sheries
managers and might be described using this approach.

Model results suggest that �sh behavior differs among the different parts of the river.
Smaller values of p̂00 in the region just above the con�uenceof the Grande Ronde and Snake
Rivers for both models indicate that �sh behavior may be more erratic in this area, perhaps
having shorter runs of staying and holding. The very high values of p̂00 in the Snake River
indicate that there may be longer runs of staying in these segments, even after adjusting
for mean river velocity. Mobile tracking of radio-tagged �sh during the study period also
documented long periods of delay for �sh migrating through the Snake River (Hockersmith
et al. 1998).

In this case, the use of mean water velocity to adjust the distance traveled in a given
movement did not alter the interpretation of the parameters. Further re�nements of this
approach might better accommodate changes in �ow by using water velocity during the
exact time interval in which a �sh passes through a particular river segment rather than
mean water velocity. The methodology described here provides an initial framework for
estimating the effect of other environmental conditions, e.g., temperature and water clarity
on small-scale �sh behavior during migration.
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